Fluticasone propionate belongs to corticosteroids class of drugs. It is most effective treatment for persistent asthma. Major metabolite for Fluticasone propionate is Fluticasone 17ß-Carboxylic Acid Propionate and is excreted in urine.

In this study we developed and validated a LC/MS/MS method for the determination of Fluticasone propionate and Fluticasone 17ß-carboxylic acid propionate (Fluticasone metabolite) in human K3EDTA plasma using CEREX Trace-N SPE cartridges. MS/MS detection was set first for Fluticasone 17ß-carboxylic acid propionate and Fluticasone 17ß-carboxylic acid propionate-d5 in TIS negative mode. Subsequently the ionization mode was switched to TIS positive mode with MS/MS detection set for Fluticasone propionate and Fluticasone propionate-d5.

Chemical structures

Figure A: Fluticasone Propionate
Figure B: Fluticasone 17ß-Carboxylic Acid Propionate
Figure C: Fluticasone propionate-d5
Figure D: Fluticasone 17ß-Carboxylic acid propionate-d3

 purs: Shimadzu HPLC prominence with Autosampler
All Sort® API5000 Mass spectrometer

Extraction details:

Extraction type: Solid Phase Extraction
Sample volume: 400 µL
Buffer: 0.003N Hydrochloric acid
Cartridges: CEREX Trace-N SPE cartridges
Elution Solvent: 1% Ammonium Hydroxide solution

Chromatography Details:

Mobile Phase A: 0.3% Ammonium Hydroxide in purified H₂O
Mobile Phase B: Pure Acetonitrile
Flow rate: 0.5 mL/min
Injection Volume: 20 µL
HPLC column: Waters, Xbridge C-18, 2.1 x 50 mm, 3.5µ

HPLC Gradient Details:

Time
0 min 0.5 mL/min
2.0 min 0.5 mL/min
3.0 min 0.5 mL/min
3.1 min 0.5 mL/min
4.8 min 0.5 mL/min

MS/MS detection:

MS/MS detection was achieved using Multiple Reaction Monitoring (MRM) scan in TurbolionSpray (TIS) positive and negative mode.

METHOD

Calibration range for Fluticasone Propionate is 5,000 pg/mL and 20,000 pg/mL for Fluticasone 17ß-carboxylic acid propionate.

Analytes and the IS were extracted by solid phase extraction from human K3EDTA plasma using CEREX Trace-N cartridges. MS/MS detection was set first for Fluticasone 17ß-carboxylic acid propionate and Fluticasone 17ß-carboxylic acid propionate-d5 in TIS negative mode. Subsequently the ionization mode was switched to TIS positive mode with MS/MS detection set for Fluticasone propionate and Fluticasone propionate-d5.

RESULTS

Fluticasone bio-assay was developed and validated at Frontage Laboratories according to FDA guideline for Validation of Bioanalytical Method.

Linearity:

<table>
<thead>
<tr>
<th>R²</th>
<th>R²</th>
<th>R²</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90 ± 0.02 ± 0.05 ± 0.06 ± 0.15</td>
<td>0.99 ± 0.17 ± 0.22 ± 0.23 ± 0.32</td>
<td>0.98 ± 0.13 ± 0.24 ± 0.25 ± 0.34</td>
<td>0.99 ± 0.17 ± 0.22 ± 0.23 ± 0.32</td>
</tr>
</tbody>
</table>

Selectivity:

No interfering peaks were detected at analyte retention times.

Stability:

Typical Chromatograms for LLOQ samples:

CONCLUSION

A sensitive bioanalytical assay was developed and validated for determination of Fluticasone and Fluticasone 17ß-Carboxylic Acid Propionate in human plasma by LC/MS/MS. A simultaneous TS switch from negative to positive was used to detect analyte signal during the injection. The validated method is robust and have been successfully applied to multiple GLP studies. Successful incurred sample reproducibility (ISR) demonstrated that method is reliable for analyzing Fluticasone propionate and Fluticasone 17ß-Carboxylic acid propionate.